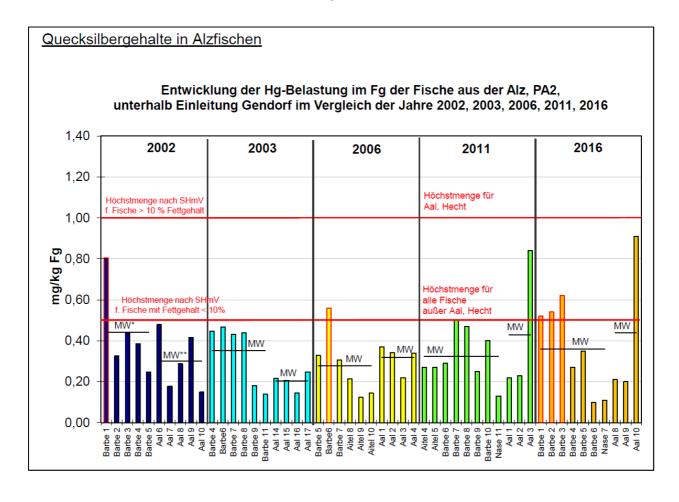
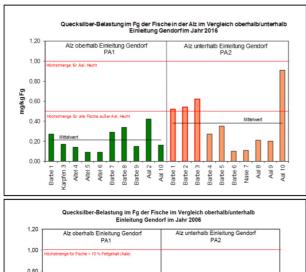
Gewässerökologisches Gutachten

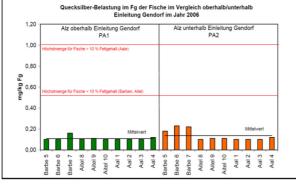

ANHANG 16

Rückstandsuntersuchung – Entwicklung ausgewählter Stoffe

Inhalt


1.	Quecksilber	2
2.	HCB	5
3.	Triphenylzinn	8
4.	Tributylzinn	11
5.	Weitere OZVs	12
6.	Dioxine	15
7.	PCBs	19
8.	Perfluorierte Carbonsäuren und DONA	23
8.1	PFOA (C8)	23
8.2	PFOS (C8)	23
8.3	DONA	
8.4	PFDA (C10)	24

1. Quecksilber



FISCHE

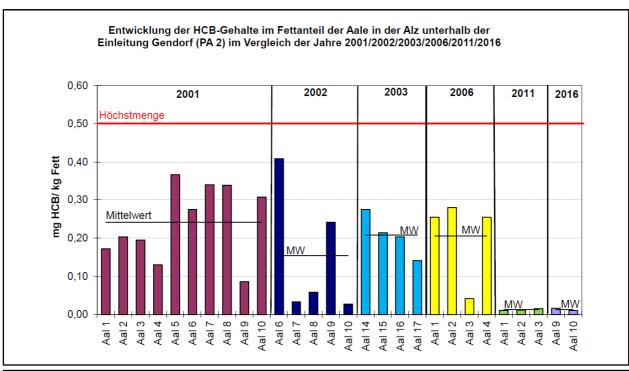
Quecksilber-Belastung im Fg der Fische im Vergleich oberhalb/unterhalb Einleitung Gendorf (Jahr 2016, 2011, 2006, 2003)

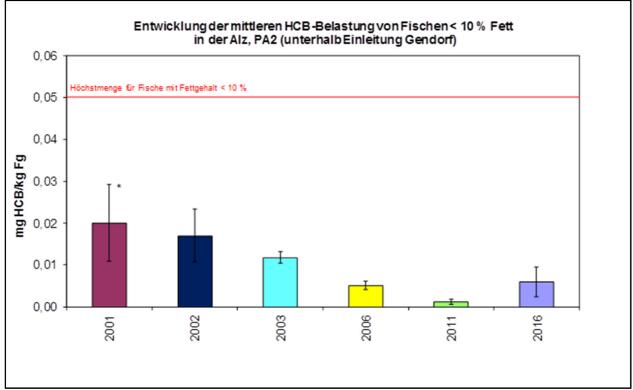
SEDIMENT

Tabelle 5: Quecksilber im Alz-Sediment; Vergleich oberhalb/unterhalb Einleitung, Vergleich 2001/2003/2006/2011/2016

Lage der				alb Einleit					
Probestelle				Gendorf					
		PA1 PA1 PA1 PA1 PA1							
	Einheit	2001	2003	2006	2011	2016			
Quecksilber	mg/kg TS*	< 0,1	0,4	< 0,1	0,017	< 0,07			
Lage der				u	nterhalb E	inleitung			
Probestelle					Gend	orf			
		PA2	PA2	PA2	PA2	PA2	PA3	PA3	PA3
	Einheit	2001	2001 2003 2006 2011 2016						2016
Quecksilber	mg/kg TS	< 0,1	0,8	< 0,1	1,0	0,54	2,8	0,033	0,16

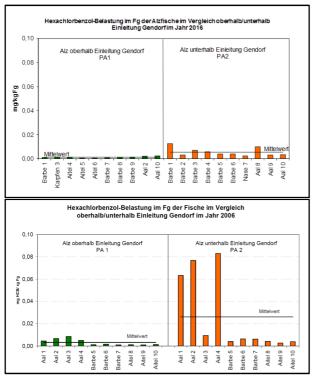
*Nachweisgrenzen 2001-2006: 0,1 mg Hg/kg TS; 2011: 0,01 mg Hg/kg TS; 2016: 0,07 mg Hg/kg TS

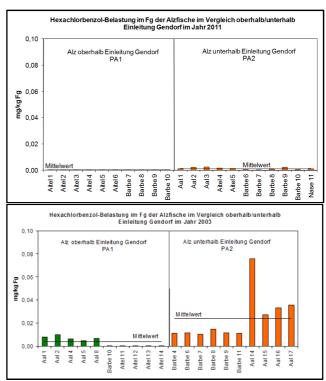

SCHWEBSTOFFE


Tabelle 15: Quecksilber in Alz-Schwebstoffen; Vergleich oberhalb/unterhalb Einleitung, Vergleich 2001/2003/2006/2011/2016

Lage der Probestelle	oberhalb Einleitung Gendorf						
		PSA1	PSA1	PSA1	PSA1	PSA1	
	Einheit	2001	2003	2006	2011	2016	
Quecksilber	mg/kg TS*	0,08	< 0,1	0,1	0,047	< 0,07	
Lage der Probestelle	unterhalb Einleitung Gendorf						
		PSA2	PSA2	PSA2	PSA2	PSA2	
	Einheit	2001	2003	2006	2011	2016	
Quecksilber	mg/kg TS	0,7	4,7	1,9	4,9	2,7	

*Nachweisgrenzen 2001-2006: 0,1 mg Hg/kg TS; 2011: 0,01 mg Hg/kg TS; 2016: 0,07 mg Hg/kg TS


2. HCB



FISCHE

HCB im Fg der Fische im Vergleich oberhalb/unterhalb Einleitung Gendorf (Jahr 2016, 2011, 2006, 2003)

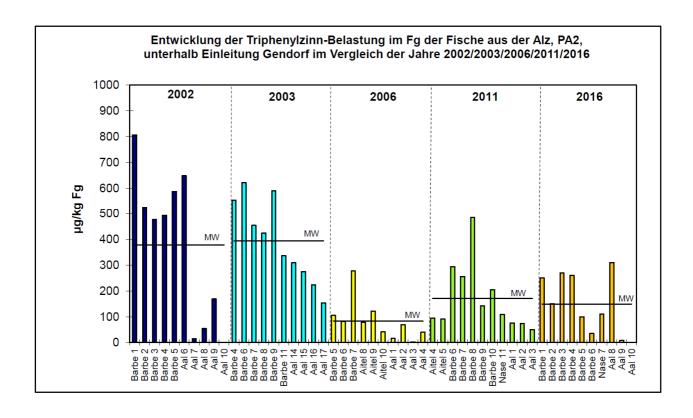
Aal 1 Aal 4 Aal 5 Aal 5

SEDIMENT

Lage der Probestelle		oberhalb Einleitung Gendorf					
Probenbezeichnung	Einheit	PA1 PA1 PA1 PA1					
		2001 2003 2011 2016					
Hexachlorbenzol	μg/kg TS	2	1,18	< 10	< 10		

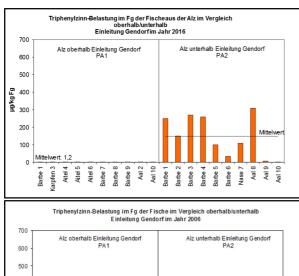
Lage der Probestelle			unterhalb Einleitung Gendorf						
Probenbezeichnung	Einheit	PA2	PA2	PA2	PA2	PA3	PA3	PA3	
		2001	2003	2011	2016	2003	2011	2016	
Hexachlorbenzol	μg/kg TS	7 5,01 < 10 < 10 59,6 < 10 < 10							

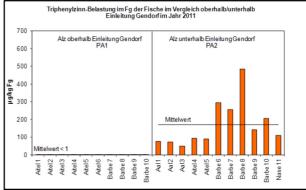
*Nachweisgrenze 2001; 2003: 1 µg/ HCB/kg TS; 2011; 2016: 10 µg HCB/kg TS

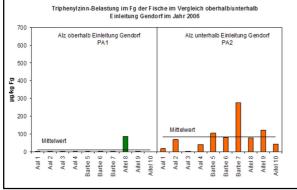

SCHWEBSTOFFE

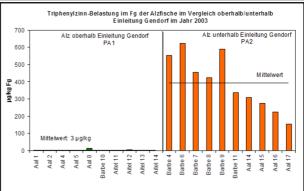
Lage der Probestelle		oberhalb Einleitung Gendorf					
Probenbezeichnung	Einheit	PSA1	PSA1	PSA1	PSA1		
		2001	2003	2011	2016		
Hexachlorbenzol	μg/kg TS	2*	1,31*	< 10*	< 10*		

Lage der Probestelle		unterhalb Einleitung Gendorf					
Probenbezeichnung	Einheit	PSA2	PSA2	PSA2	PSA2		
		2001 2003 2011 2016					
Hexachlorbenzol	μg/kg TS	16 144 < 10 < 10					


^{*}Nachweisgrenze 2001/2003: 1 µg/kg TS; 2011/2016: 10 µg/kg TS


3. Triphenylzinn




FISCHE

Triphenylzinn-Belastung im Fg der Fische im Vergleich oberhalb/unterhalb Einleitung Gendorf (Jahr 2016, 2011, 2006)

SEDIMENT [µg/kg TS]

Lage der Probestelle			oberhalb Einleitung Gendorf					
	Einheit	PA1 PA1 PA1 PA1 2003 2006 2011 2016						
Parameter	Parameter							
Triphenylzinn		<1 <1 <2 <1						

Lage der Probestelle			unterhalb Einleitung <u>Gendorf</u>					
	Einheit	PA2 PA2 PA2 PA2 PA3 PA3 PA3 2003 2006 2011 2016 2003 2011 2016						
Parameter								
Triphenylzinn		120 < 1 154 190 180 5,8 49						

SCHWEBSTOFFE [µg/kg TS]

Lage der Probestelle		oberhalb Einleitung Gendorf				
Probenbezeichnung	Einheit	PSA1 2003	PSA1 2006	PSA1 2011	PSA1 2016	
Parameter						
Triphenylzinn		< 1	< 1	< 2	2	

Lage der Probestelle						
Probenbezeichnung	Einheit	PSA2 2003	PSA2 2006	PSA2 2011	PSA2 2016	
Parameter						
Triphenylzinn		< 1	118	8,5	78	

^{*}Nachweisgrenzen 2003, 2006: 1 μ g/kg TS; 2011: 2 μ g/kg TS; 2016: 1 μ g/kg TS (<u>Tricyclohexylzinn</u>: 10 μ g/kg TS)

4. Tributylzinn

FISCHE

3.2.3.2 Tributylzinn

An den Kontrollprobestellen PA1 und PJ3, also außerhalb des Einflussbereichs der Einleitung des Gendorf-Werks, wiesen die untersuchten Fische im Jahr 2016, wie schon bei früheren Untersuchungen, vernachlässigbar geringe Tributylzinn-Belastungswerte auf. Die TBT-Werte aller untersuchten Fische aus diesen Untersuchungsbereichen lagen unterhalb der Nachweisgrenze von 1 µg/kg Fg. An den Probestellen PA2 (Mittelwert: 9,2 µg/kg Fg) und PJ4 (Mittelwert: 7,5 µg/kg Fg), unterhalb der Gendorf-Einleitung, war ein deutlicher **Anstieg der mittleren Tributylzinn-Kontamination gegenüber den Kontrollbereichen** (PA1, PJ3) festzustellen.

Die folgende Aufstellung (Tabelle 8) zeigt einen Vergleich der mittleren Tributylzinnbelastungen und die Minimal- und Maximalwerte (in Klammern) der Fische aus PA2 und PJ 4 aus den Jahren 2002, 2003, 2006, 2011 und 2016:

Tabelle 8: Entwicklung der Tributylzinnbelastung in PA2 und PJ4

Tributylzinn in µg/kg Fg	2002	2003	2006	2011	2016
Alz, PA2	17 (0,3–33,9)	19 (1,8-33,8)	3,3 (< 1-8,4)	4,1 (< 1–11)	9,2 (< 1–21)
Alzmündung, Inn, PJ4	7,2 (0,3–17,6)	12 (1,0-20,5)	3,5 (< 1-9,4)	2,4 (< 1-4,9)	7,5 (< 3,3–11)

Die Untersuchungen 2016 ergaben für die Alz an PA2 einen weiteren Anstieg der TBT-Werte gegenüber den Jahren 2011 (Faktor: ca. 2,2) und 2006 (Faktor: ca. 2,8). Der Mittelwert lag mit 9,2 µg/kg Fg damit aber immer noch deutlich unter den Werten der Jahre 2002 und 2003. Die Fische aus PJ4 (Inn bzw. Alzmündungsbereich) waren 2016 mit einem Durchschnittswert von 7,5 µg/kg Fg ebenfalls stärker mit Tributylzinn belastet als dies 2011 und 2006 der Fall war (Faktor im Vergleich zu 2011: 3,1). Der Wert lag etwa auf dem Belastungsniveau aus dem Jahr 2002 (7,2 µg/kg Fg).

5. Weitere OZVs

FISCHEAuszug aus dem Laborbericht OZV in untersuchten Filettranchen mit Haut PA1 oberhalb Einleitung CPG

Labor-Nr.:	1903/	16-1	1903/1	16-2	1903/1	6-3	1903/1	6-4	1903/1	6-5	1903/1	6-6	1903/16	6-7	1903/16	6-8	1903/1	6-9	1903/16	3-10
Probenbezeichnung:	Barb	e 1	Aal	2	Karpfe	n 3	Aitel	4	Aitel	5	Aitel	6	Barbe	7	Barbe	8	Barbe	9	Aal 1	0
	PA	1	PA	1	PA	1	PA ·	1	PA 1		PA [*]	1								
Einheit:	[µg/kg	OS]	[µg/kg	OS]	[µg/kg	OS]	[µg/kg	OS]	[µg/kg (OS]	[µg/kg (OS]	[µg/kg C	OS]	[µg/kg C	OS]	[μg/kg (OS]	[µg/kg	OS]
OZV (bestimmt als Kation)				I						I		ı		Ī		I				
Monobutylzinn *	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0
Dibutylzinn *	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0		1,6	<	1,0	<	1,0	<	1,0
Monophenylzinn *	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0
Tributylzinn *	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0
Monooctylzinn *	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0
Tetrabutylzinn *	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0
Diphenylzinn *	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0
Dioctylzinn *	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0
Tricyclohexylzinn *	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0
Triphenylzinn *		1,4	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0		1,5		2,2	<	1,0	<	1,0
Trioctylzinn *	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0
Tetraoctylzinn *	<	2,0	<	2,0	<	2,0	<	2,0	<	2,0	<	2,0	<	2,0	<	2,0	<	2,0	<	2,0
Tetraphenylzinn *	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0

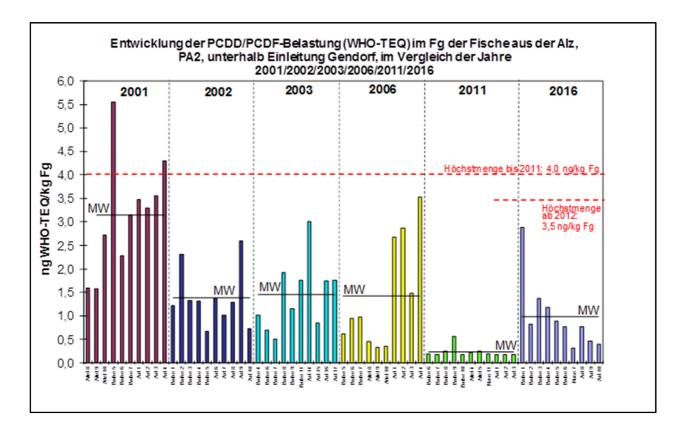
PA2 unterhalb Einleitung CPG

											•									
Labor-Nr.:	1904/	16-1	1904/1	6-2	1904/1	6-3	1904/1	6-4	1904/1	6-5	1904/1	6-6	1904/16	6-7	1904/16	8-8	1904/16	6-9	1904/16	s-10
Probenbezeichnung:	Barb	e 1	Barbe	2	Barbe	3	Barbe	4	Barbe	5	Barbe	6	Nase	7	Aal 8		Aal 9		Aal 1	0
_	PA	2	PA:	2	PA 2	2	PA 2		PA 2		PA 2		PA 2	2						
Einheit:	[µg/kg	OS]	[µg/kg	OS]	[µg/kg	OS]	[µg/kg	OS]	[µg/kg	OS]	[µg/kg (OS]	[µg/kg C)S]	[µg/kg C	OS]	[µg/kg C	S]	[µg/kg (OS]
OZV (bestimmt als Kation)	ì	i		i		Ĩ		ĺ		i		Ī		i		i		Ī		
Monobutylzinn *	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0
Dibutylzinn *		1,7	<	1,0		1,1		2,0		1,9	<	1,0		2,3	<	1,0	<	1,0	<	1,0
Monophenylzinn *	<	1,0	<	1,0		1,3		1,3	<	1,0	<	1,0	<	1,0		2,6	<	1,0	<	1,0
Tributylzinn *		19		8,1		10		21		8,4		7,0		14		2,7	<	1,0	<	1,0
Monooctylzinn *	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0
Tetrabutylzinn *		2,0	<	1,0	<	1,0		2,1	<	1,0	<	1,0	<	1,0		3,2	<	1,0	<	1,0
Diphenylzinn *		3,4		2,4		4,7		4,7		2,5	<	1,0		2,5		1,8	<	1,0	<	1,0
Dioctylzinn *	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0
Tricyclohexylzinn *	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0
Triphenylzinn *		250		150		270		260		100		35		110		310		8,0	<	1,0
Trioctylzinn *	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0	<	1,0
Tetraoctylzinn *	<	2,0	<	2,0	<	2,0	<	2,0	<	2,0	<	2,0	<	2,0	<	2,0	<	2,0	<	2,0
Tetraphenylzinn *		11	<	1.0		18		19		2,1	<	1.0		9.5		30	<	1.0	<	1.0

SEDIMENT

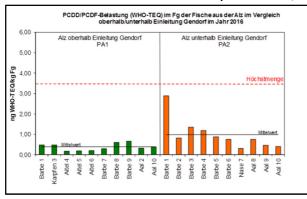
Lage der Probestelle				Einleitung idorf	
	Einheit	PA1	PA1	PA1	PA1
		2003	2006	2011	2016
Parameter			-		
Monobutylzinn	μg/kg	10,9	2,5	< 2	3
Dibutylzinn	TS*	4,1	< 1	< 2	2
Tributylzinn		1,8	< 1	< 2	< 1
Tetrabutylzinn		< 1	< 1	< 2	< 1
Monooktylzinn		< 1	< 1	< 2	< 1
Dioktylzinn		< 1	< 1	< 2	2
Tricyclohexylzinn		< 1	< 1	2,3	< 10
Triphenylzinn		< 1	< 1	< 2	< 1
Trioctylzinn					2
Tetraoctylzinn					< 1
Monophenylzinn					< 1
Diphenylzinn					< 1
Tetraphenylzinn					<1

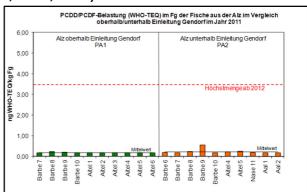
Lage der Probestelle		unterhalb Einleitung Gendorf						
	Einheit	PA2	PA2	PA2	PA2	PA3	PA3	PA3
		2003	2006	2011	2016	2003	2011	2016
Parameter			•			•		
Monobutylzinn	μg/kg TS	255	4,8	37	270	341	< 2	39
Dibutylzinn		17,8	< 1	3,8	< 1	27,7	< 2	2
Tributylzinn		41,2	2,4	5,5	4,3	27,6	< 2	2
Tetrabutylzinn		< 1	< 1	3,5	< 1	< 1	< 2	< 1
Monooktylzinn		96,8	4,1	147	130	< 1	< 2	4
Dioktylzinn		88,7	< 1	130	32	72,5	2,3	3
Tricyclohexylzinn		< 1	< 1	2,1	< 10	< 1	2,3	< 10
Triphenylzinn		120	< 1	154	190	180	5,8	49
Trioctylzinn					< 1			2
Tetraoctylzinn					< 1			< 1
Monophenylzinn					78			5
Diphenylzinn					54			3
Tetraphenylzinn					4400			190

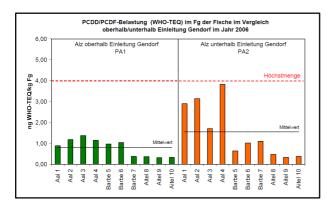

SCHWEBSTOFFE

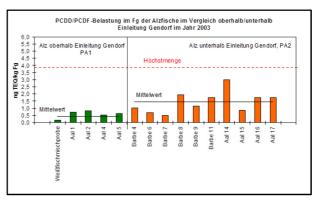
Lage der Probestelle			oberhalb E	_	
Probenbezeichnung	Einheit	PSA1 2003	PSA1 2006	PSA1 2011	PSA1 2016
Parameter	•				
Monobutylzinn	μg/kg TS*	12,6	10,6	< 2	42
Dibutylzinn		3,5	4,5	< 2	37
Tributylzinn		1,8	< 1	< 2	3
Tetrabutylzinn		< 1	< 1	< 2	< 1
Monooktylzinn		6,6	4,3	< 2	8
Dioktylzinn		4,9	< 1	< 2	11
Tricyclohexylzinn		< 1	< 1	2,3	< 10
Triphenylzinn		< 1	< 1	< 2	2
Trioctylzinn					5
Tetraoctylzinn					3
Monophenylzinn					< 1
Diphenylzinn					1
Tetraphenylzinn					2

Lage der Probestelle			unterhalb E Geno	_	
Probenbezeichnung	Einheit	PSA2	PSA2	PSA2	PSA2
		2003	2006	2011	2016
Parameter	_				
Monobutylzinn	μg/kg TS	639	57,5	< 2	340
Dibutylzinn		57,7	125	3,6	73
Tributylzinn		168	110	< 2	29
Tetrabutylzinn		71,6	11,0	< 2	9
Monooktylzinn		643	346	< 2	1200
Dioktylzinn		846	420	< 2	400
Tricyclohexylzinn		< 1	< 1	< 2	< 10
Triphenylzinn		< 1	118	8,5	78
Trioctylzinn					3
Tetraoctylzinn					< 1
Monophenylzinn					34
Diphenylzinn					18
Tetraphenylzinn					280

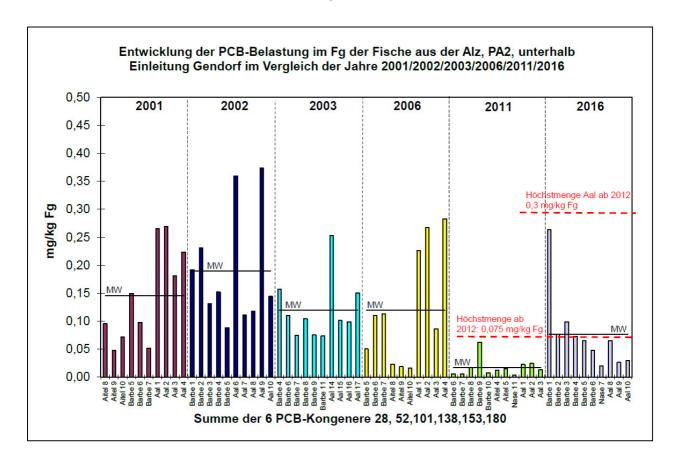

*Nachweisgrenzen 2003, 2006: 1 µg/kg TS; 2011: 2 µg/kg TS; 2016: 1 µg/kg TS (Tricyclohexylzinn: 10 µg/kg TS)


6. Dioxine




FISCHE

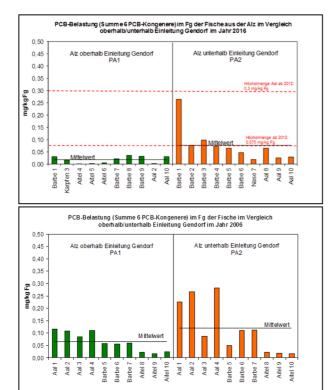
Dioxin-Belastung im Fg der Fische im Vergleich oberhalb/unterhalb Einleitung Gendorf (Jahr 2016, 2011, 2006, 2003)

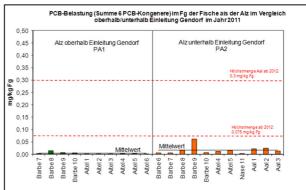

SEDIMENT

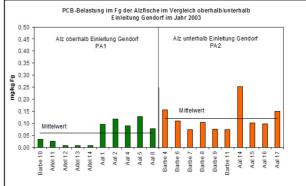
Einzelkongenere	Einle	A1 rhalb itung	unte Einle	A2 rhalb itung	PA3 unterhalb Einle <mark>itun</mark> g		
	2011	2016	2011	2016	2011	2016	
2,3,7,8 Tetra CDD	0,9	< 1*	0,9	< 1	0,9	< 1	
1,2,3,7,8 Penta CDD	< 1	< 1	< 1	< 1	< 1	< 1	
1,2,3,4,7,8 Hexa CDD	< 1	< 1	< 1	< 1	< 1	< 1	
1,2,3,6,7,8 Hexa CDD	< 1	2	< 1	< 1	< 1< 1	< 1	
1,2,3,7,8,9 Hexa CDD	< 1	1	< 1	< 1	< 1	< 1	
1,2,3,4,6,7,8 Hepta CDD	6	40	34	< 5	3	< 5	
Octa CDD	28	314	220	41	28	< 10*	
2,3,7,8 Tetra CDF	1,3	< 1	10	< 1	0,9	< 1	
1,2,3,7,8 Penta CDF	0,9	< 1	3,1	9	0,9	< 1	
2,3,4,7,8 Penta CDF	0,9	< 1	6,5	2	0,9	< 1	
1,2,3,4,7,8 Hexa CDF	4	< 1	60	129	4,2	< 1	
1,2,3,6,7,8 Hexa CDF	1,2	< 1	34	21	1,3	< 1	
1,2,3,7,8,9 Hexa CDF	< 1	< 1	< 1	< 2	< 1	< 1	
2,3,4,6,7,8 Hexa CDF	< 1	< 1	20	< 2	< 1	< 1	
1,2,3,4,6,7,8 Hepta CDF	28	4	340	68	28	< 3	
1,2,3,4,7,8,9 Hepta CDF	3	< 3	25	19	3	< 3	
Octa CDF	28	11	1200	190	36	<10	
Summe PCDD/F (ITEQ)	1,01	1	18,9	18	0,94	0	

SCHWEBSTOFFE

Einzelkongenere	ober	A1 halb itung	PSA2 unterhalb Einleitung			
	2011	2016	2011	2016		
2,3,7,8 Tetra CDD	0,9	< 1	0,9	< 1		
1,2,3,7,8 Penta CDD	1	< 1	1	< 1		
1,2,3,4,7,8 Hexa CDD	1	< 1	1	< 1		
1,2,3,6,7,8 Hexa CDD	1	< 1	1	< 1		
1,2,3,7,8,9 Hexa CDD	1	< 1	1	< 1		
1,2,3,4,6,7,8 Hepta CDD	12	< 15	46	15		
Octa CDD	92	< 35	330	125		
2,3,7,8 Tetra CDF	4,4	< 2	8,2	5		
1,2,3,7,8 Penta CDF	2,3	< 2	4	9		
2,3,4,7,8 Penta CDF	3,1	< 1	8,3	3		
1,2,3,4,7,8 Hexa CDF	24	< 1	72	24		
1,2,3,6,7,8 Hexa CDF	10	< 1	39	6		
1,2,3,7,8,9 Hexa CDF	1	< 1	1	< 1		
2,3,4,6,7,8 Hexa CDF	5,4	< 1	29	2		
1,2,3,4,6,7,8 Hepta CDF	120	< 4	530	21		
1,2,3,4,7,8,9 Hepta CDF	8,6	< 3	38	< 5		
Octa CDF	300	< 20	1200	< 51		
Summe PCDD/F (ITEQ)	6,9	0	24	6		


7. PCBs




Anhang 16: Rückstandsuntersuchung – Entwicklung ausgewählter Stoffe

FISCHE

PCB-Belastung im Fg der Fische im Vergleich oberhalb/unterhalb Einleitung Gendorf (Jahr 2016, 2011, 2006, 2003)

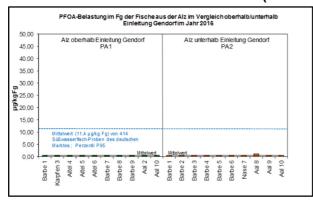
Gewässerökologisches Gutachten Anhang 16: Rückstandsuntersuchung – Entwicklung ausgewählter Stoffe

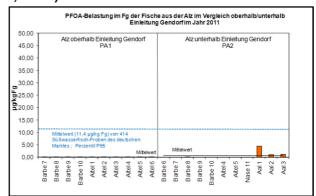
SEDIMENT

Alle Werte lagen 2016 wie schon 2011 unter der Bestimmungsgrenze von 0,01 mg/kg TS.

Gewässerökologisches Gutachten Anhang 16: Rückstandsuntersuchung – Entwicklung ausgewählter Stoffe

SCHWEBSTOFFE

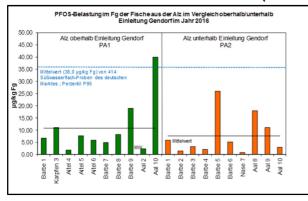

SCHWEBSTOFFE
Alle Werte lagen 2016 wie schon 2011 unter der Bestimmungsgrenze von 0,01 mg/kg TS.

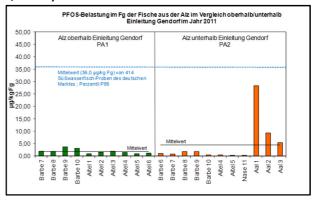

8. Perfluorierte Carbonsäuren und DONA

8.1 PFOA (C8)

FISCHE

PFOA im Fg der Fische im Vergleich oberhalb/unterhalb Einleitung Gendorf (Jahr 2016, 2011)

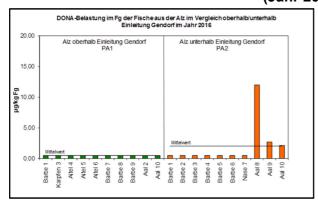


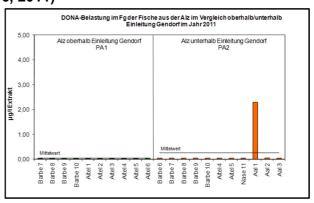


8.2 PFOS (C8)

FISCHE

PFOS im Fg der Fische im Vergleich oberhalb/unterhalb Einleitung Gendorf (Jahr 2016, 2011)

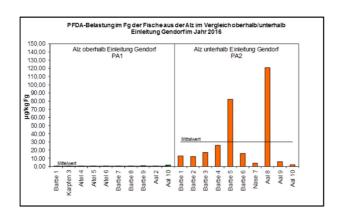




8.3 DONA

FISCHE

DONA im Fg der Fische im Vergleich oberhalb/unterhalb Einleitung Gendorf (Jahr 2016, 2011)



8.4 PFDA (C10)

FISCHE

PFDA im Fg der Fische im Vergleich oberhalb/unterhalb Einleitung Gendorf (Jahr 2016, 2011)

2011 nicht untersucht